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Abstract
The Gibbs–Thomson coefficient and solid–liquid interfacial energy of the solid
In solution in equilibrium with In Bi eutectic liquid have been determined to be
(1.46 ± 0.07) × 10−7 K m and (40.4 ± 4.0) × 10−3 J m−2 by observing the
equilibrated grain boundary groove shapes. The grain boundary energy of the
solid In solution phase has been calculated to be (79.0 ± 8.7) × 10−3 J m−2

by considering force balance at the grain boundary grooves. The thermal
conductivities of the In–12.4 at.% Bi eutectic liquid phase and the solid In
solution phase and their ratio at the eutectic melting temperature (72 ◦C) have
also been measured with radial heat flow apparatus and Bridgman-type growth
apparatus.

1. Introduction

The solid–liquid interfacial energy, σSL, is recognized to play a key role in a wide range
of metallurgical and materials phenomena, from wetting [1] and sintering through to phase
transformations and coarsening [2]. Thus, a quantitative knowledge of σSL values is necessary.
However, the determination of σSL is more difficult. The earliest direct determinations
were derived from droplet undercooling measurements, on the supposition that maximum
observed undercooling signified homogeneous nucleation. An empirical relationship between
the interfacial energy and the melting enthalpy change to estimate the interfacial energy was
proposed by Turnbull [3] and is expressed as

σSL = τ�HM

V 2/3
S N1/3

a

, (1)

5 Author to whom any correspondence should be addressed.

0953-8984/07/506102+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/50/506102
mailto:marasli@erciyes.edu.tr
http://stacks.iop.org/JPhysCM/19/506102


J. Phys.: Condens. Matter 19 (2007) 506102 N Maraşlı et al
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Figure 1. Schematic illustration of an equilibrated grain boundary groove formed at a solid–liquid
interface in a temperature gradient showing the definitions of r, θ .

where the coefficient τ was found to be 0.45 for metals and 0.34 for nonmetallic systems [3],
�HM is the enthalpy change of fusion, VS is the molar volume of the solid phase and Na

is the Avogadro constant. However, the experiments generated substantially large values
of undercooling, resulting in large values of σSL, indicating that such experiments typically
underestimate σSL, except where there is independent evidence that homogeneous rather
than heterogeneous nucleation was operative. Other disadvantages of deriving σSL from
undercooling experiments were discussed by Jones [4] and Eustathopoulos [5].

A technique for the quantification of the interfacial free energy from the solid–liquid
interfacial grain boundary groove shape has been established. This technique is based on
direct application of the Gibbs–Thomson equation and can be applied to measure σSL for
multi-component systems as well as pure materials, for opaque materials as well as transparent
materials, for any observed grain boundary groove shape, and for any R = KL/KS value. When
the solid–liquid interface is equilibrated with a grain boundary in a temperature gradient, the
shape of a grain boundary groove is formed by the intersection of planar grain boundaries with
an otherwise planar solid–liquid interface, as shown in figure 1. At the equilibrium conditions,
the curvature undercooling, �Tr , is the temperature difference between the temperature of a flat
interface (T0) and the temperature of a curved interface (Tr ). When the solid–liquid interfacial
free energy is isotropic, the curvature undercooling is given by the following equation for the
case of a planar grain boundary intersecting a planar solid–liquid interface:

� = r�Tr = TEVSσSL

�HM
= σSL

�Sf
, (2)

where � is the Gibbs–Thomson coefficient, TE is the equilibrium temperature or melting
temperature, VS is the molar volume of solid, �HM is the enthalpy change, �Sf is the entropy
change of fusion per unit volume, and r is the radius of the groove profile, as shown in
figure 1. This equation is called the Gibbs–Thomson equation for a curved interface having
an isotropic solid–liquid interfacial energy, and is useful for considering the effect of the solid–
liquid interfacial energy on solidification and melting, as it expresses the effective change in
melting point for a curved interface.
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Equation (2) may be integrated in the y direction (perpendicular to the macroscopic
interface) from the flat interface to a point on the cusp, as shown in figure 1:∫ −y

0
�Tr dy = �

∫ −y

0

1

r
dy. (3)

The right-hand side of equation (3) may be evaluated for any shape by noting that, by definition,
ds = r dθ and dy = r cos θ dθ (s and θ are shown in figure 1) so that

�

∫ −y

0

1

r
dy = −�

∫ y

0

1

r
dy = −�

∫ θ

π/2

1

r
r cos θ dθ = �(1 − sin θ). (4)

The left-hand side of equation (3) may be evaluated if �Tr is known as a function of y.
When the thermal conductivities of solid and liquid phases are equal, the temperature depends
just on temperature gradient and the distance, that is:

�Tr = Gy (5)

so that
1
2 Gy2 = �(1 − sin θ). (6)

The value of � may be obtained from the slope of a plot of y2 against (1 − sin θ).
The theoretical basis of the grain boundary groove profile method was given by Bolling and
Tiller [6] for equal thermal conductivities of solid and liquid phases, and the first report of
its application to measure σSL was by Jones and Chadwick [7] for some transparent materials.
Nash and Glicksman [8] extended Bolling and Tiller’s analysis to include the effects of unequal
thermal conductivities of solid and liquid phases. Measurements of solid–liquid interfacial
energies were made for some transparent organic materials [3–14].

The technique was extended to measure σSL for alloys by Gündüz and Hunt [15, 16]. The
observation of the grain boundary groove shape in an alloy is obviously very difficult. Gündüz
and Hunt [15] have developed an apparatus to obtain the grain boundary groove shape in binary
eutectic systems. The details of the apparatus and experimental procedures are given in [15].
Gündüz and Hunt [15] also developed a finite difference model to calculate the corresponding
difference in temperature, �Tr , between the flat interface for each point on the grain boundary
groove shapes and evaluated the right-hand side of the equation (3) by measuring the values
of θ . The values of θ were obtained by fitting a Taylor expansion to the adjacent points on
the cusp. Usually the points from b to i shown in figure 1 were used to obtain more reliable �

values with Gündüz and Hunt’s model. This numerical method calculates the temperature along
the interface of a measured grain boundary groove shape rather than attempting to predict the
equilibrium grain boundary groove shape. If the grain boundary groove shape, the temperature
gradient in the solid, GS, and the ratio of thermal conductivity of the equilibrated liquid phase
to solid phase, R = KL/KS, are known or measured, then the value of the Gibbs–Thomson
coefficient is obtained with the Gündüz and Hunt numerical method. Measurements of the
solid–liquid interface energies were made in metallic binary eutectic based systems [15–20].

Bayender et al [21] modified the apparatus originally designed by Hunt et al [22] to
observe the equilibrated grain boundary groove shape directly for transparent materials. They
applied Gündüz and Hunt’s numerical method to determine the Gibbs–Thomson coefficients,
solid–liquid interface energies and grain boundary energies. Measurements of the solid–liquid
interface energies were made in transparent organic binary systems [23–26].

Indium has been used widely in soldering, the aeroplane industry and other types of
industry. Until now, the measurements of solid–liquid interfacial energies in metallic binary
alloys were made at above the 140 ◦C melting temperature, and were not made at lower than
the 100 ◦C equilibrating temperature because of the difficulty of temperature control on the

3
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sample and worries about quenching of the interface at the low equilibrating temperature. Thus
the aims of the present work were to observe the grain boundary groove shapes in metallic
alloys at the low equilibrating temperature and to determine the Gibbs–Thomson coefficient,
solid–liquid interfacial energy and grain boundary energy for solid In solution (In–12.4 at.%
Bi) in equilibrium with In–22 at.% Bi eutectic liquid from the observed grain boundary groove
shapes.

2. Experimental procedure

2.1. Experimental apparatus

To observe the equilibrated grain boundary groove shapes in opaque materials, Gündüz and
Hunt [15, 16] designed a radial heat flow apparatus. Maraşlı and Hunt [17] improved the
experimental apparatus for higher temperatures. The details of the apparatus and experimental
procedures are given in [15–17]. In the experimental technique, the sample was heated from the
centre by a single heating wire and the outside of the sample was kept cool by water cooling to
get a constant radial temperature gradient in the sample. A thin liquid layer was melted around
the central heating wire and annealed for a long enough period in a constant radial temperature
gradient. At the end of the annealing period, the sample was quenched by just cutting off the
power. Cooling of the sample from the outside must be more effective to get a well-quenched
solid–liquid interface. Water cooling was sufficient to get a well-defined solid–liquid interface
at the high equilibrating temperature, but after a few experimental works it was seen that water
cooling was insufficient to obtain a well-defined solid–liquid interface at the lower equilibrating
temperature which is smaller than 100 ◦C. The melting point of In–22 at.% Bi eutectic alloy
is 72 ◦C. Thus, the outside of sample was kept at −10 ◦C using a Poly Science digital 9102
model heating/refrigerating circulating bath containing an aqueous ethylene glycol solution,
and the gap between the cooling jacket and the sample was filled with graphite dust to get a
well-quenched solid–liquid interface in the present work. The temperature of the circulating
bath was kept constant at −10 ◦C to an accuracy of ±0.01 ◦C and the temperature on the sample
was controlled to an accuracy of ±0.01 ◦C with a Eurotherm 2604-type controller.

2.2. Sample production

Consider a binary eutectic system. Above the eutectic temperature, a binary eutectic system
consists of solid and liquid provided that the alloy compositions Cα < C0 < CE or
CE > C0 < Cβ , where CE, Cα , and Cβ are the composition of the eutectic, solid α and solid
β phases, respectively. If this eutectic system is held in a very stable temperature gradient,
the liquid droplets move up the temperature gradient by temperature gradient zone melting
(TGZM) and single solid can grow on the eutectic structure during the annealing period. When
the composition of the alloy is far from the eutectic composition, the experiment usually needs
a long time to reach equilibrium due to the larger freezing range. If the alloy composition is
near the eutectic composition, above the eutectic temperature, a binary eutectic system consists
of liquid. If this system is held in a very stable temperature gradient, there will be no liquid
droplets behind the solid phase and two solid phases can grow together on the eutectic structure.
The equilibrating time for this system should be shorter because of the small freezing range.

The maximum solubility of bismuth in indium is about 12.4 at.% Bi at the eutectic melting
temperature, which is 72 ◦C [27]. Thus the composition of alloy was chosen to be In–12.4 at.%
Bi to growth the single solid In solution phase from the eutectic liquid on the eutectic structures.
In–12.4 at.% Bi alloy was prepared in a vacuum furnace by using 99.99% pure indium and
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99.9% pure bismuth. After stirring, the molten alloy was poured into a graphite crucible held
in a specially constructed casting furnace at approximately 30 K above the melting point of
the alloy. The molten metal was then directionally frozen from the bottom to the top to ensure
that the crucible was completely full. The sample was then placed in the radial heat flow
apparatus.

The experiments were carried out in two steps. In the first step, the thermocouples were
calibrated by detecting the melting point during very slow heating and cooling using a lower
temperature gradient operational mode. In the second step, the specimen was heated from the
centre using a single heating wire (1.7 mm in diameter, Kanthal A-1) and the outside of the
specimen was kept at −10 ◦C using a Poly Science digital 9102 model heating/refrigerating
circulating bath containing an aqueous ethylene glycol solution. A thin liquid layer (1–2 mm
thick) was melted around the central heater and the specimen was annealed in a very stable
temperature gradient for a long time. The annealing time for In–12.4 at.% Bi alloy was 4 days.
During the annealing period, the temperature in the specimen and the vertical temperature
variations on the sample were recorded continuously by the stationary thermocouples and a
movable thermocouple, respectively, using a data logger via computer, and the input power
was recorded periodically. The temperature in the sample was stable to about ±0.025 K for
hours and ±0.05 K for up to 4 days. At the end of the annealing time the specimen was rapidly
quenched by turning off the input power, which is sufficient to get a well-defined solid–liquid
interface, because the liquid layer around the central heating wire was very thin (typically less
than 0.5–1 mm).

2.3. Measurements of the coordinates of equilibrated grain boundary groove shapes

The quenched sample was cut transversely into lengths of typically 25 mm, and transverse
sections were ground flat with 180 grit SiC paper. Grinding and polishing were then carried
out by following a standard route. After polishing, the samples were etched with a 4 g picric
acid ((NO2)3C6H2OH) and 20 ml of hydrochloric acid (HCl) in 400 ml of ethanol (C2H5OH)

for 3 s.
The equilibrated grain boundary groove shapes were then photographed with a Honeywell

CCD digital camera placed in conjunction with an Olympus BH2 type light optical microscope.
A graticule (200 × 0.01 = 2 mm) was also photographed using the same objective.
The photographs of the equilibrated grain boundary groove shapes and the graticule were
superimposed on one another using Adobe PhotoShop 8.0 version software, so that accurate
measurements of the groove coordinate points on the groove shapes could be made.

2.4. Geometrical correction for the groove coordinates

The coordinates of the cusp, x, y, should be measured using the coordinates x, y, z, where the x
axis is parallel to the solid–liquid interface, the y axis is normal to the solid–liquid interface, and
the z axis lies at the base of the grain boundary groove, as shown in figure 2(a). The coordinates
of the cusp x ′, y ′ from the metallographic section must be transformed to x, y coordinates.
Maraşlı and Hunt [17] devised a geometrical method to make appropriate corrections to the
groove shapes, and the details of the geometrical method are given in [17].

The relation between x and x ′ can be expressed as [17]

x = x ′ cos α

x = x ′
√

a2 + d2

√
a2 + b2 + d2

(7)

5



J. Phys.: Condens. Matter 19 (2007) 506102 N Maraşlı et al

Figure 2. (a) Schematic illustration of the relationship between the actual coordinates, x, y, and
the measured coordinates, x ′, y′, of the groove shape; (b) schematic illustration for the metallic
examination of the sample, where B is the location of the grain boundary groove shape onto the
first plane OJFA, C is the location of the grain boundary groove shape onto the second plane HIDC,
AB = b, CG = ED = a and AG = d; (c) schematic illustration of the displacement of the grain
boundary groove shape position along the x ′ and y′ axes [17].

and the relation between y and y ′ can be expressed as [17]

y = y ′ cos β

y = y ′ d√
a2 + d2

, (8)

where d is the distance between the first and second planes along the z ′ axis, b is the
displacement of the grain boundary position along the x ′ axis, a is the displacement of the
solid–liquid interface along the y ′ axis, α is the angle between the x ′ axis and the x axis, and
β is the angle between the y ′ axis and the y axis, as shown in figure 2. In this work, the values
of a, b and d were measured in order to transform the cusps coordinates x ′, y ′ into the x, y
coordinates as follows.

Two perpendicular reference lines (approximately 0.1 mm thick and 0.1 mm deep) were
marked near the grain boundary groove on the polished surface of the sample (figure 2(c)).
The samples were then polished and the grain boundary groove shapes were photographed.

6
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The thickness of the sample d1 was measured using a digital micrometer (with a resolution of
1 μm) at several points of the sample to obtain the average value. After thickness measurements
had been made, the sample was again polished to remove a thin layer (at least 40–50 μm) from
the sample surface. The same grain boundary groove shapes were again photographed and
the thickness of the sample, d2, was measured with the same micrometer. The difference
in the thickness of the sample, d = d1 − d2, gave the layer removed from the sample
surface. The photographs of the grain boundary groove shapes were superimposed on each
other using Adobe PhotoShop 8.0 version software to measure the displacement of the solid–
liquid interface along the y ′ axis and the displacement of the grain boundary groove position
along the x ′ axis (see figure 2(b)). Thus the required a, b and d measurements were made so
that appropriate corrections to the shape of the grooves could be deduced [17].

The coordinates of equilibrated grain boundary groove shapes were measured with an
optical microscope to an accuracy of ±10 μm. The thickness of the sample (2–2.5 cm long)
for geometrical correction was measured using a digital micrometer with ±1 μm resolution.
Thus the uncertainty in the measurements of equilibrated grain boundary coordinates was less
than 0.2%.

2.5. Thermal conductivities of the solid and liquid phases

The thermal conductivity ratio of the In–22 at.% Bi eutectic liquid phase to the solid In solution
phase (In–12.4 at.% Bi), R = KL(eutectic liquid)/KS(solid In solution), must be known or measured
to evaluate the Gibbs–Thomson coefficients using the present numerical method. The radial
heat flow apparatus is an ideal technique for measuring the thermal conductivity of the solid
phases. The thermal conductivity of solid In solution (In–12.4 at.% Bi) is needed to evaluate
the temperature gradient on the solid phase. In the radial heat flow method, a cylindrical sample
was heated by using a single heating wire along the axis at the centre of the sample, and
the sample was kept in a very stable temperature gradient for a period to achieve steady-state
conditions. At the steady-state condition, the temperature gradients in the cylindrical specimen
are given by Fourier’s law,

dT

dr
= − Q

AKS
, (9)

where Q is the total input power from the centre of the specimen, A is the surface area of the
specimen and KS is the thermal conductivity of the solid phase. Integration of equation (9)
gives

KS = 1

2π

ln

(
r2

r1

)
Q

T1 − T2
(10)

KS = a0
Q

T1 − T2
, (11)

where a0 = ln(r2/r1)/2π
 is an experimental constant, r1 and r2(r2 > r1) are fixed distances
from the centre axis of the specimen, 
 is the length of the heating wire (which is constant)
and T1 and T2 are the temperatures at the fixed positions r1 and r2 from the centre axis of the
specimen. Equation (11) could be used to obtain the thermal conductivity of the solid phase by
measuring the difference in temperature between the two fixed points for a given power level,
provided that the vertical temperature variation is a minimum or zero.

The thermal conductivity of the solid In solution (In–12.4 at.% Bi) was measured in the
radial heat flow apparatus. The alloy was prepared in a vacuum furnace by using 99.99%
purity indium and 99.9% purity bismuth. The sample was heated using the central heating
wire in steps of 10 K, from 313.2 K up to 5 K below the eutectic temperature (345.3 K). The
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Figure 3. Thermal conductivity of solid indium solution versus temperature.

Table 1. Thermal conductivities of solid and liquid phases and their ratios at their melting
temperatures for the In–Bi binary eutectic system.

Alloy Phases
Melting
temperature (K) K (W K−1 m−1) R = KL/KS

In–Bi

Solid In solution
(In–12.4 at.%
Bi)

345.15 32.82

0.84

Eutectic liquid
(In–22 at.% Bi)

345.15 27.56

samples were kept at steady state for at least 2 h. At the steady-state condition, the total input
power, vertical temperature variations on the sample and the temperatures in the sample were
measured. When all desired power and temperature measurements had been completed, the
sample was left to cool down to room temperature.

The thermal conductivities of solid In solution (In–12.4 at.% Bi) versus temperature are
shown in figure 3. The value of KS for the solid In solution at the eutectic melting temperature
was obtained as 32.82 W K−1 m−1 by extrapolating to the eutectic temperature, as shown in
figure 3. The values of thermal conductivities used in the calculations are given in table 1.

It is not possible to measure the thermal conductivity of the liquid phase with the radial
heat flow apparatus, since a thick liquid layer (10 mm) is required. A layer of this size would
certainly have led to convection. If the thermal conductivity ratio of the liquid phase to the
solid phase is known and the thermal conductivity of the solid phase is measured at the melting
temperature, the thermal conductivity of the liquid phase can then be evaluated. The thermal
conductivity ratio can be obtained during directional growth with a Bridgman-type growth
apparatus. The heat flow away from the interface through the solid phase must balance that
liquid phase plus the latent heat generated at the interface, i.e. [30]

V L = KSGS − KLGL, (12)

where V is the growth rate, L is the latent heat, GS and GL are the temperature gradients in
the solid and liquid, respectively, and KS and KL are the thermal conductivities of the solid
and liquid phases, respectively. For very low velocities, V L � KSGS, so that the conductivity
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ratio, R, is given by

R = KL

KS
= GS

GL
. (13)

A directional growth apparatus, firstly constructed by McCartney [31], was used to
find out the thermal conductivity ratio, R = KL/KS. A thin-walled graphite crucible,
6.3 mm OD × 4 mm ID × 180 mm in length, was used to minimize convection in the liquid
phase.

Molten In–12.4 at.% Bi alloy was poured into the thin-walled graphite tube and the
molten alloy was then directionally frozen from bottom to top to ensure that the crucible
was completely full. The specimen was then placed in the directional growth apparatus.
The specimen was heated to 30 K over the melting temperature of the alloy. The specimen
was then left to reach thermal equilibrium for at least 2 hours. The temperature in the
specimen was measured with an insulated K-type thermocouple. In the present work, a
1.2 mm OD × 0.8 mm ID alumina tube was used to insulate the thermocouple from the melt,
and the thermocouple was placed perpendicular to the heat flow (growth) direction. At the end
of equilibration, the temperature in the specimen was stable to ±0.5 K for a short-term period
and to ±1 K for a long-term period. When the specimen temperature stabilized, the directional
growth was started by turning the motor on. The cooling rate was recorded with a data logger
via computer. In the present measurements, the growth rate was 8.3 × 10−4 cm s−1. When
the solid–liquid interface passed the thermocouple, a change in the slope of the cooling rate
for liquid and solid phases was observed. When the thermocouple reading was approximately
30 K below the melting temperature, the growth was stopped by turning the motor off.

The thermal conductivity ratio can be evaluated from the ratio of cooling rates for the
liquid phase and the solid phase. The cooling rate of the liquid and solid phases is given by

(
dT

dt

)
L

=
(

dT

dx

)
L

(
dx

dt

)
L

= GLV (14)

and (
dT

dt

)
S

=
(

dT

dx

)
S

(
dx

dt

)
S

= GSV . (15)

From equations (13), (14) and (15), the thermal conductivity ratio can be written as

R = KL

KS
= GS

GL
= ( dT

dt )S

( dT
dt )L

, (16)

where the (dT/dt)S and (dT/dt)L values were directly measured from the temperature versus
time curve shown in figure 4. The ratio of the thermal conductivity of the eutectic liquid (In–22
at.% Bi) to the solid In solution (In–12.4 at.% Bi), R = KL(eutectic)/KS(In solution) was found
to be 0.84, as shown in figure 4. The values of KL and KS used in the determination of the
Gibbs–Thomson coefficients are also given in table 1.

The estimated experimental error in the measurement of KS is the sum of the fractional
uncertainty of the measurements of power, temperature differences, length of heating wire and
thermocouple positions, which can be expressed as∣∣∣∣�KS

KS

∣∣∣∣ =
∣∣∣∣�Q

Q

∣∣∣∣ +
∣∣∣∣�T1

T1

∣∣∣∣ +
∣∣∣∣�T2

T2

∣∣∣∣ +
∣∣∣∣�





∣∣∣∣ +
∣∣∣∣�r1

r1

∣∣∣∣ +
∣∣∣∣�r2

r2

∣∣∣∣. (17)

The estimated error in the thermal conductivity measurements is about 5% [32].
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Figure 4. Cooling rate of In–12.4 at.% Bi alloy.

2.6. Temperature gradient measurement in the solid phase

The cylindrical sample was heated from the centre by a thin heating wire and a thin liquid layer
was melted around the central heating element. At steady state, the temperature gradient at
radius r is given by

GS = dT

dr
= − Q

2πr
KS
, (18)

where Q is the input power, 
 is the length of the heating element, r is the distance of the
solid–liquid interface to the centre of the sample, and KS is the thermal conductivity of the
solid phase.

The average temperature gradient of the solid phase must be determined for each grain
boundary groove shape. This was done by measuring the input power, the length of the heating
element and the position of the solid–liquid interface and the value of KS for the solid In
solution (In–12.4 at.% Bi) at the eutectic melting point. By using these measured values in
equation (18), the temperature gradient can be determined for each grain boundary groove
shape.

The estimated experimental error in the measurement of temperature gradient is a sum of
the fractional uncertainty in the measurements of power, the length of the heating wire, the
thermal conductivity and the thermocouples’ positions, which can be expressed as

∣∣∣∣�GS

GS

∣∣∣∣ =
∣∣∣∣�Q

Q

∣∣∣∣ +
∣∣∣∣�





∣∣∣∣ +
∣∣∣∣�r

r

∣∣∣∣ +
∣∣∣∣�KS

KS

∣∣∣∣. (19)

If equation (19) is compared with equation (17), the experimental errors came from the
measurements of Q, 
, r in equation (19), which already exist in the fractional uncertainties
at the equation (17). Thus the total experimental error in the thermal gradient measurements is
equal to the experimental error in thermal conductivity measurements, and is about 5%.
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Table 2. The values of the Gibbs–Thomson coefficient for solid In solution (In–12.4 at.% Bi) in
equilibrium with In–22 at.% Bi eutectic liquid, as determined in the present work. The subscripts
LHS and RHS refer to the left-hand side and the right-hand side of the groove, respectively.

Gibbs–Thomson coefficient

Groove no
G K × 102

(K m−1) α (deg) β (deg)
�LHS × 10−7

(K m)
�RHS × 10−7

(K m)

a 17.29 19.6 11.8 1.44 1.46
b 17.48 16.7 12.0 1.48 1.43
c 17.84 20.9 23.5 1.50 1.48
d 17.95 8.9 8.1 1.49 1.50
e 18.16 6.3 8.5 1.47 1.45
f 20.69 5.7 10.6 1.43 1.44
g 18.05 7.3 13.1 1.47 1.46
h 16.14 19.4 10.9 1.49 1.44
i 21.64 18.0 17.1 1.47 1.40
j 18.83 10.9 9.2 1.48 1.43

�̄ = (1.46 ± 0.07) × 10−7 K m

3. Results and discussion

3.1. Determination of Gibbs–Thomson coefficient

If the thermal conductivity ratio of the liquid phase to the solid phase, the coordinates of the
grain boundary groove shapes and the temperature gradient of the solid phase are known, then
the Gibbs–Thomson coefficient (�) can be obtained by using the numerical method described
in detail [15]. The experimental error in the determination of the Gibbs–Thomson coefficient
is the sum of the experimental errors in the measurements of the temperature gradient, thermal
conductivity and groove coordinates. Thus the total error in the determination of the Gibbs–
Thomson coefficient is about 5%.

In the present work, the Gibbs–Thomson coefficients for the solid In solution (In–
12.4 at.% Bi) in equilibrium with In–22 at.% Bi eutectic liquid were determined with the
present numerical model by using ten equilibrated grain boundary groove shapes. The grooves
examined in this system are shown in figure 5. As can be seen from figure 5, a very thin In2Bi

(In–33.2 at.% Bi) layer which is smaller then 1 μm formed in front of the solid In solution phase
(In–12 at.% Bi), and this allows a well-defined solid–liquid interface to be observed during the
quench, and also the phases, grains and interfaces of the system are very clear. The values of �

for solid In solution (In–12 at.% Bi) are given in table 2. The average value of � from table 2 is
(1.46±0.07)×10−7 K m for solid In solution (In–12.4 at.% Bi) in equilibrium with In–22 at.%
Bi eutectic liquid.

3.2. Determination of entropy of fusion per unit volume

It is also necessary to know the entropy of fusion per unit volume, �S f , for the determination
of the solid–liquid interfacial energy. For pure materials the entropy of fusion per unit volume
is given by

�S∗
f = �HM

TM

1

VS
, (20)

where �HM is the enthalpy change in the solid phase at the melting temperature, TM is the
melting temperature, and VS is the molar volume of the solid phase. If the solid phase is
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Figure 5. Typical grain boundary groove shapes for solid In solution in equilibrium with In–22 at.%
Bi eutectic liquid.
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Table 3. Some physical properties of solid In solution (In–12.4 at.% Bi) phase at the eutectic
temperature.

System In–Bi eutectic

Composition of the quenched liquid phase, CL In–22 at.% Bi [27]
Composition of solid In solution phase, CS In–12.4 at.% Bi [27]
f (C)a −0.56 [27]
Eutectic melting temperature, Tm (K) 345.15 [27]
Molar volume of solid In, VIn (m3) 15.75 × 10−6 [33]
Molar volume of solid Bi, VBi (m3) 21.31 × 10−6 [33]
Molar volume of solid In solution
(In–12.4 at.% Bi),
V(In−12.4 at.% Bi), (m3)

13.10 × 10−6

Liquidus slope, mL (K/at.fr) −440.4 [27]
Entropy change of fusion, �Sf (J K−1 m−3) 2.77 × 105

a f (C) = CS−CL
(1−CL) CL

.

solid solution, then the molar volume of the solid is replaced by the molar volume of the solid
solution. The molar volume of solid solution is given by [33],

VSS = VS −
∑

i

xi V
∗
i , (21)

where VSS is the molar volume of solid solution, xi is the molar fraction of the i th metal and
V ∗

i is the molar volume of i th metal in the pure state. The change in entropy for an alloy is
given by [15],

�Sf = (1 − CS)(SL
A − SS

A) + CS(SL
B − SS

B)

VS
, (22)

where SL
A, SS

A, SL
B and SS

B are partial molar entropies for A and B materials and CS is the
solid composition. Since the entropy terms are generally not available, for convenience, the
undercooling at constant composition may be related to the change in composition at constant
temperature. For a sphere [34]

�Cr = 2σSLVS(1 − CL)CL

r RTM(CS − CL)
, (23)

where R is the gas constant. For small changes

�Tr = mL�Cr = 2mLσSLVS(1 − CL)CL

r RTM(CS − CL)
. (24)

For a spherical solid, r1 = r2 = r and the curvature undercooling is written by

�Tr = 2σSL

r�Sf
. (25)

From equation (24) and (25), the entropy change for an alloy is written as

�S f = RTM

mLVS

CS − CL

(1 − CL)CL
. (26)

The values of the relevant constant obtained from [27] and the calculated entropy change of
fusion per unit volume are given in table 3. The error in the determination of entropy change
of fusion per unit volume is estimated to be about 5% [35].
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Table 4. A comparison of the solid–liquid interface energy measured in the present work with
values obtained in previous works. (Note: CNE—classical nucleation experiments; GBG—grain
boundary groove method.)

Solid–liquid interface energy
σSL × 10−3 (J m−2)

System Solid phase Liquid phase Temperature (K) Theoretical Experimental

In In In 430.15 34 [36] 30.8 [37] CNE
48 [38] 36.0 [39] CNE
34 [40]

In–Bi In solution
(In–12.4 at.% Bi)

Eutectic liquid
(In–22 at.% Bi)

345.15 — 40.4 ± 4.0 GBG
(present work)

3.3. Evaluation of solid–liquid interfacial energy

If the values of � and �S f are known, the value of solid–liquid interfacial energy, σSL can
be evaluated from equation (2). The solid–liquid interfacial energy of the solid In solution
phase (In–12.4 at.% Bi) in equilibrium with the eutectic liquid (In–22 at.% Bi) was evaluated
to be (40.4 ± 4.0) × 10−3 J m−2 using the values of � and �S f . The experimental error in
the determination of solid–liquid interface energy is the sum of the experimental errors of the
Gibbs–Thomson coefficient and the entropy change of fusion per unit volume. Thus, the total
experimental error of the solid–liquid interfacial energy evaluation in the present work is about
10%.

A comparison of the solid–liquid interfacial energy measured in the present work with
the values obtained in previous works is given in table 4. As can be seen from table 4, our
experimental value of σSL is in good agreement with the values of σSL obtained in previous
works.

3.4. Grain boundary energy

If the grains on either side of the interface are the same phase, then the grain boundary energy
can be expressed by

σgb = 2σSL cos θ, (27)

where θ = θA+θB
2 is the angle that the solid–liquid interfaces make with the y axis as shown in

figure 1. The angles θA and θB were obtained from the cusp coordinates, x, y, using a Taylor
expansion for parts at the base of the groove. According to equation (27), the value of σgb

should be smaller or equal to twice that of the solid–liquid interface energy, i.e. σgb � 2σSL.
The value of the grain boundary energy for the solid In solution phase (In–12.4 at.% Bi)

was found to be (79.0±8.7)×10−3 J m−2 using the values of the σSL and θ into equation (27).
The estimated error in determination of the θ angles was found to be 1%. Thus the total
experimental error in the resulting grain boundary energy is about 11%.

4. Conclusion

The radial heat flow apparatus was used to observe the equilibrated grain boundary groove
shapes for alloys having a lower melting temperature (smaller then 100 ◦C) and the solid In
solution (In–12.4 at.% Bi) grains were equilibrated with In Bi eutectic liquid (In–22 at.%
Bi) at 72 ◦C. The Gibbs–Thomson coefficient and the solid–liquid interfacial energy of the
solid In solution in equilibrium with In–22 at.% Bi eutectic liquid have been determined from
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the equilibrated grain boundary groove shapes using a numerical model. The grain boundary
energy of the solid In solution phase has been calculated by considering a force balance at the
grain boundary grooves. The thermal conductivities of the In–Bi eutectic liquid phase and the
solid In solution phase and their ratio at the eutectic temperature have also been measured using
radial heat flow apparatus and Bridgman-type growth apparatus.
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